

2024 UAF® SUMMIT

ACTIONABLE ARCHITECTURE IN THE 21ST CENTURY – A HYBRID EVENT

Hosts

Laura E. Hart

Dr. Aurelijus Morkevicius

Matthew Hause

S DASSAULT SYSTEMES

UAF Annual Events

ARE THER THOM TOOL Send TO Send TO Send TO Send TO Send TO Object Management Group,

UAF Annual Events Calendar

- 1. UAF and MBSE Information Day, 2015, Reston, VA
- 2. UAF and MBSE Summit, 2016, Reston, VA,
- 3. UAF and MBSE Summit, 2017, Reston, VA,
- 4. UAF, UPDM, and MBSE tutorials, 2017, Reston, VA,
- 5. UAF and MBSE Summit, 2017, Brussels, Belgium
- 6. UAF and MBSE tutorials, 2017, Brussels, Belgium
- 7. UAF and MBSE Summit, 2018, Reston, VA
- 8. UAF and MBSE tutorials, 2018, Reston, VA
- 9. MBSE-inspired Actionable Enterprise Architectures Summit, 2018, Ottawa, Canada
- 10. MBSE-inspired Actionable Enterprise Architectures Tutorials, 2018, Ottawa, Canada
- 11. MBSE-inspired Actionable Enterprise Architectures Summit, 2019, Reston, VA
- 12. UAF in the context of the NATO Architecture Framework (NAF), 2019, Amsterdam, Netherlands
- 13. UAF Summit: Actionable Architecture in the 21st century, 2020, Virtual
- 14. UAF Summit: Actionable Architecture in the 21st century and beyond, 2021, Virtual
- 15. UAF Summit: Actionable Architecture in the 21st century Hybrid event, 2022, Reston, VA
- 16. UAF Tool Vendor Roadshow, Hybrid event, 2022, Austin, TX
- 17. UAF Summit: Actionable Architecture in the 21st century Hybrid event, 2023, Reston, VA
- 18. UAF Summit: Actionable Architecture in the 21st century Hybrid event, 2024, Reston, VA

Morning Agenda

Welcome Address Co-Chair: Aurelijus Morkevicius, Industry Process Consulting Director (Dassault Systèmes)

Morning Keynote: The Dawn of Enterprise Architecture in The Air Force *Jeffrey W. Eggers, DISL, Air Force ISR Chief Architect*

Morning Break

Federated Model Management Tony Mallia, Senior Enterprise Architect, Odyssey Consulting

Enabling Enterprise Transformation Using Enterprise Architecture Principles and Concepts James Martin, Distinguished Engineer (The Aerospace Corporation)

Applying UAF for Diary & Livestock Production Systems Engineering Dr.-Ing. Christian von Holst, Global Tractor Systems Engineering Lead @ John Deere GmbH & CO KG

Lunch Break

Time (EST) 9:00 - 9:309:30 - 10:1510:15 - 10:45 10:45 - 11:1511:15 - 11:45 11:45 - 12:15

12:15 - 13:30

Afternoon Agenda

Afternoon Keynote: Digital Mission Architecture. Architecture-Based Decision Making for Mission Engineering and Integration *Jaime J. Bestard, Chief Engineer, Digital Mission Architecture, Department of Defense*

Darth Vader's Secret Weapon: Implementing Mission Engineering with UAF *Matthew Hause, Principal, SSI/INCOSE*

MBAcq User Managed Community Laura Hart, Research Engineer Senior Manager (Lockheed Martin)

Afternoon Break

MOSA Domain Overlay – Status Update Richard Wise, Senior Research Engineer (Georgia Tech Research Institute)

UAF OR SYSML? Yes! Gene Shreve, Senior Systems Engineer (Integration Innovation, Inc.) Laura Hart, Research Engineer Senior Manager (Lockheed Martin)

Closing Address: Q&A Session and Discussion

Co-Chair: Aurelijus Morkevicius, Industry Process Consulting Director (Dassault Systèmes) Co-Chair: Laura Hart, Research Engineer Senior Manager (Lockheed Martin) Co-Chair: Matthew Hause, Principal Consultant (System Strategy) Time (EST) 13:30 - 14:15 14:15 - 14:4514:45 - 15:15 15:15 - 15:4515:45 - 16:15 16:15 - 16:45 16:45 - 17:00

Presentations will be recorded and made available on BrightTalk and Youtube!

Who is behind?

Tool vendors:

- Dassault Systemes
- IBM
- MEGA
- Sparx Systems
- Zuken Vitech Inc.

Industry/ Government Contributors:

- 88solutions
- Aerospace Corporation
- Airbus
- agnos.ai UK Ltd
- Arcfield
- Auxilium Technology Group
- BAE Systems
- Boeing
- CAG Syntell
- Department of Navy (US)
- Elparazim
- Georgia Institute of Technology
- Lockheed Martin
- MITRE
- Northrop Grumman
- Office of the Secretary of Defense
- oose eG
- Rolls-Royce Corporation
- RTX
- Sierra Nevada
- Thales
- INCOSE and GfSE

Leadership

Laura E. Hart Dr. Aurelijus Morkevicius

Matthew Hause

2024 UAF® OVERVIEW

UAF is a Standard...

- To develop architectural descriptions for commercial industries, federal governments and military organizations
- Is compatible with **DoDAF** and **NAF**
- Has many different use cases from Enterprise Systems Engineering and SoS Engineering to enabler for Business Transformation planning
- Developed by Object Management Group (OMG) with the leadership from Dassault Systemes, Lockheed Martin and System Strategy
- Is an international ISO standard ISO/IEC 19540:1 and ISO/IEC 19540:2
- Current version of UAF specification is 1.2
 <u>https://www.omg.org/spec/UAF/1.2/About-UAF</u>

UAF Use Cases

15288 System Lifecycle Processes Acquisition Decision Making AOA (Analysis of Alternatives) Application Portfolio Management **Budget Planning Business and Mission Analysis - INCOSE Business Process Reengineering Business Transformation Planning Capability Gaps Analysis Capability Planning** Capability Portfolio Management Capability-based Assessment **Certification Planning Defense Acquisition System** Define and analyze problem space **Describe SoS Design Surety Digital Engineering Planning and Execution Digital Transformation Planning** Digital Twin **Doctrine Development Ecosystem Sustainability** Enterprise Planning **Enterprise Systems Engineering - INCOSE** Federated Mission Network (FMN) **JCIDS** Logistics Support Planning Mission Assurance

Copyright © 2024 OMG. All rights reserved.

11

Mission Criticality Mission Engineering Operational Analysis Operational Sustainability Operations **Operations Planning** Optimization **Organizational and Strategic Planning Performance Management Policy Formulation Portfolio Management** PPBE **Predictive Analytics Program Assessment and Evaluation Program Formulation Program Planning Requirements Development and Flowdown Risk and Opportunity Management** Security Analysis Simulation Support Strategic Planning and Execution Sustainability Sustainment Engineering System Lifecycle Management System Security Engineering System Sustainability **Technology Planning and Assessment Test Planning and Execution** Training

The Modeling Landscape

Group.

WAF ONG UNIFID ARCHTICTURE FRAMEWORK **	Motivation Mv	Taxonomy Tx	Structure Sr	Connectivity Cn	Processes Pr	States St	Sequences Sq	Information ^c If	Parameters ^d Pm	Constraints Ct	Roadmap Rm	Traceability Tr	
Architecture Management ^a Am	Architecture Principles Am-Mv	Architecture Extensions Am-Tx ^e	Architecture Views Am-Sr	Architecture References Am-Cn	Architecture Development Method Am-Pr	Architecture Status Am-St		Dictionary Am-If	Architecture Parameters Am-Pm	Architecture Constraints Am-Ct	Architecture Roadmap Am-Rm	Architecture Traceability Am-Tr	
	Summary & Overview Sm-Ov												
Strategic St	Strategic Motivation St-Mv	Strategic Taxonomy St-Tx	Strategic Structure St-Sr	Strategic Connectivity St-Cn	Strategic Processes St-Pr	Strategic States St-St		Strategic Information St-If		Strategic Constraints St-Ct	Strategic Deployment, St-Rm-D Strategic Phasing St-Rm-P	Strategic Traceability St-Tr	
Operational Op		Operational Taxonomy Op-Tx	Operational Structure Op-Sr	Operational Connectivity Op-Cn	Operational Processes Op-Pr	Operational States Op-St	Operational Sequences Op-Sq			Operational Constraints Op-Ct		Operational Traceability Op-Tr	
Services Sv		Services Taxonomy Sv-Tx	Services Structure Sv-Sr	Services Connectivity Sv-Cn	Services Processes Sv-Pr	Services States Sv-St	Services Sequences Sv-Sq	Operational Information Op-If	Environment	Services Constraints Sv-Ct	Services Roadmap Sv-Rm	Services Traceability Sv-Tr	
Personnel Ps	Requirements Rq-Mv	Personnel Taxonomy Ps-Tx	Personnel Structure Ps-Sr	Personnel Connectivity Ps-Cn	Personnel Processes Ps-Pr	Personnel States Ps-St	Personnel Sequences Ps-Sq	Resources	En-Pm-E and Measurements Me-Pm-M	Competence, Drivers, Performance Ps-Ct	Personnel Availability Ps-Rm-A Personnel Evolution PS-Rm-E Personnel Forecast Ps-Rm-F	Personnel Traceability Ps-Tr	
Resources Rs		Resources Taxonomy Rs-Tx	Resources Structure Rs-Sr	Resources Connectivity Rs-Cn	Resources Processes Rs-Pr	Resources States Rs-St	Resources Sequences Rs-Sq	Information s Rs-If	ano Risks Rk-Pm-R	Resources Constraints Rs-Ct	Resources evolution Rs-Rm-E Resources forecast Rs-Rm-F	Resources Traceability Rs-Tr	
Security Sc	Security Controls Sc-Mv	Security Taxonomy Sc-Tx	Security Structure Sc-Sr	Security Connectivity Sc-Cn	Security Processes Sc-Pr					Security Constraints Sc-Ct		Security Traceability Sc-Tr	
Projects Pj		Projects Taxonomy Pj-Tx	Projects Structure Pj-Sr	Projects Connectivity Pj-Cn	Projects Processes Pj-Pr						Projects Roadmap Pj-Rm	Projects Traceability Pj-Tr	
Standards Sd		Standards Taxonomy Sd-Tx	Standards Structure Sd-Sr								Standards Roadmap Sd-Rm	Standards Traceability Sd-Tr	
ctual Resources Ar			Actual Resources Structure, Ar-Sr	Actual Resources Connectivity, Ar-Cn		Simulation ^b				Parametric Execution/ Evaluation ^b			

But isn't this all we need?

Can we use just these domains and models?

This Photo by Unknown Author is licensed under CC BY-SA

SOLVING UAF PUZZLE – PRINCIPLE SCHEMATICS

ARCHITECTURE EVOLUTION

	Stra	tegic	
Operational Suite	Operational Suite	Operational Suite	Operational Suite
Trade-Off	Trade-Off	Trade-Off	Trade-Off
ources Suite ources Suite ources Suite ources Suite	ources Suite ources Suite ources Suite ources Suite	ources Suite ources Suite ources Suite ources Suite	ources Suite ources Suite ources Suite

Strategic																
									1	J						
Ор	eratio	nal Su	ite		Ор	eratio	nal Su	ite	O	peratio	nal Su	ite	O	peratio	nal Su	ite
Ζ	Trad	e-Off			7	Trad	e-Off			Trad	e-Off			Trad	e-Off	
Resources Suite	Resources Suite	Resources Suite	Resources Suite		Resources Suite											

UAF Use Cases

15288 System Lifecycle Processes Acquisition Decision Making AOA (Analysis of Alternatives) Application Portfolio Management **Budget Planning Business and Mission Analysis - INCOSE Business Process Reengineering Business Transformation Planning Capability Gaps Analysis Capability Planning** Capability Portfolio Management Capability-based Assessment **Certification Planning Defense Acquisition System** Define and analyze problem space **Describe SoS Design Surety Digital Engineering Planning and Execution Digital Transformation Planning** Digital Twin **Doctrine Development Ecosystem Sustainability** Enterprise Planning **Enterprise Systems Engineering - INCOSE** Federated Mission Network (FMN) **JCIDS** Logistics Support Planning Mission Assurance

Copyright © 2024 OMG. All rights reserved.

18

Mission Criticality Mission Engineering Operational Analysis Operational Sustainability Operations **Operations Planning** Optimization **Organizational and Strategic Planning Performance Management Policy Formulation Portfolio Management** PPBE **Predictive Analytics Program Assessment and Evaluation Program Formulation Program Planning Requirements Development and Flowdown Risk and Opportunity Management** Security Analysis Simulation Support Strategic Planning and Execution Sustainability Sustainment Engineering System Lifecycle Management System Security Engineering System Sustainability **Technology Planning and Assessment Test Planning and Execution** Training

UAF V2 REQUIREMENTS

#	Name	Text	Documentation		
1	🗆 🖪 1 Mandatory Requirements				
2	R 1.1 Provide UAF Metamodel	The standard shall include a normative meta model that captures the concepts of UAF without regard to the target implementation selected. The meta model shall be derived from UAF 1.2 meta model. The meta model shall be expressed in UML. [Note]: The purpose of the meta model is to ensure that the concepts of UAF are adequately covered and provide a basis for communication between the domain stakeholders and the implementers of UAF V2. It serves as the specification for the UAFMLs.	This is most likely replaced by KerML- based metamodel.		
3	I.2 Provide UML Profile for UAF	The Standard shall define a normative UML profile for UAF. The profile shall inherit SysML V1.7 stereotypes, to the fullest extent possible. The profile shall provide: A. A list of stereotypes and relationships between them, tag definitions, and constraints. B. Mapping between UAF profile stereotypes and UAF Metamodel concepts.	It is questionable if we are to provide one. We need to see if SysML V2 is going to provide the profile to keep consistency		
4	I.12 Provide SysML V2 Model Library for UAF	The Standard shall define a normative SysML V2 Model Library for UAF. The library shall provide: A. A list of elements and relationships between them, properties, and constraints. B. Mapping between elements in the model library and UAF Metamodel concepts.			
5	I.3 Architecture Modeling Support for Defense Organizations	The standard shall provide the ability to represent an internally consistent common core of artifacts for a set of defined viewpoints that support Defense Organizations' modeling needs. Proposals shall provide the ability to represent viewpoints defined in DoDAF and NAF.			
6	R 1.3.1 DOD Support	The standard shall support DOD needs for mission engineering, Joint Architectures for Capabilities, and Systems (JACS), and Joint Capabilities Integration and Development System.			
7	R 1.3.2 NATO Support	The standard shall support NATO needs for building NAF compliant architectures.			
8	I.4 Enable the Expression Of Business Process Models	The standard shall utilize the BPMN syntax and semantics to enable the expression of business process models. This requirement shall be met using the UML Profile for BPMN standard. The elements appearing on a business process model shall be integrated and constitute part of the Architecture Description (AD). [Note]: This requirement applies to implementation of UAF meta model based on UML Profile for UAF only.	Critical show stopper with SysML V2.		
9	I.5 Use of SysML Parametrics Elements and Diagrams Mapped to Measurements	The standard shall provide the ability to use SysML Parametrics, Elements and Diagrams to specify mathematical constraints on the structural elements of an AD. These elements shall be reflected in the UAF V2 views and constituent models.	OMG		
Сор	yright © 2024 OMG. All rights reserved.		Management Group.		

UNCLASSIFIED

UAF V2 ROADMAP

Copyright © 2024 OMG. All rights reserved.

UAF V2 Roadmap

Kick-off UAF SST

Submit RFC when SysML V2 is finalized as a new OMG specification

Stop maintaining UAF 1.x right after UAF 2 RFC is accepted by the AB

Overhead in terms of resources

Risk of one deviating far from another. UAF V2 should supersede UAF 1.x completely

Provide continues support of SysML V1.x based UAFML implementation under the umbrela of UAF V2.

Submit V2 for ISO update

Transition Plan

UAF 1.2	UAF 2
Normative	Normative
 UAF DMM UAF ML (SysML V1 based) 	 UAF MM UAF ML (SysML V1 based)
Non-normative • Traceability • Example Model • EA Guide	 UAF ML V2 (SysML V2 based) Non-normative Traceability Example Model EA Guide MBAcq Guide Mission Engineering Guide Transition to V2 Guide

Transition Plan

Copyright © 2024 OMG. All rights reserved.

Areas of Improvement

Mission Engineering

Addition of Use Cases

Services Modeling Improvements

Portfolio concept

Architecture vs. Configuration

Revisit Value Streams

Model-based Acquisition Support

Timeline

UAF V2 IMPLEMENTATION IN SYSML V2

Why SysML V2?

Increase adoption and effectiveness of MBSE with SysML by enhancing...

- Precision and expressiveness of the language
- Consistency and integration among language concepts
- Interoperability with other engineering models and tools
- Usability by model developers and consumers
- Extensibility to support domain specific applications
- Migration path for SysML v1 users and implementors
- Comparing SysML v2 with SysML v1

Simpler to learn and use

- More precise
- More expressive
- More extensible
- More interoperable

Current Status

- Established working group focusing on SySML V2 based implementation only (UAF V2 SST)
- Working closely aligned with SysML V2 team
- Reasearching if SySML V2 can address all UAF V2 needs (so far so good)
- Use combined library and metadata approach
- Develop UAF V2 libraries

Example: Actual Enterprise Phases


```
individual #actualEnterprise def MaritimeSearchAndRescue :> SAREnterprise{
    timeslice #actualEnterprisePhase CurrentPhase:>>SARPhase {
        :>>startDate {:>> val = "2022-12-12T12:30:24Z";}
        :>>endDate {:>> val = "2024-12-31T12:30:24Z";}
    }
    timeslice #actualEnterprisePhaseFuturePlanningPhase:>>SARPhase {
        :>>startDate {:>> val = "2025-01-01T12:30:24Z";}
        :>>endDate {:>> val = "2027-12-31T12:30:24Z";}
    }
    timeslice #actualEnterprisePhase dtp:>>SARPhase =
DigitalTransformationPhase;}
```


SUMMARY

Copyright © 2024 OMG. All rights reserved.

UAF is an enabler for NAF and DoDAF

and

alternatively it is a **STAND ALONE** framework to support a wide variety of architectures in different industries

which

Incorporates the best practices of MBSE

and

Evolves taking into account user feedback

More on UAF

https://www.brighttalk.com/search/?q=UAF

Intro to UAF

https://youtu.be/AWJk_7KtQ0w

Welcome to the Let's Be Modular and Open series Mics: Audio will be muted throughout the session Recording: This session will be in oded and posted on the event page Questions: Please ubing questions via chat Survey: Link will be provided in chat and posted on event page CLPs: Each session qualifies for 1.0 CLPs.

& OPEN

Dial in (audio only) number: 1-571-403-9146, Conference ID: 872 690 282#

The session Link (~30 min presentation and 30 min Q&A) : <u>https://www.dau.edu/event/Lets-Be-Modular-and-Open-</u> <u>Webinar-Model-Based-Systems-Engineering-In-Acquisition</u>

Unified Architecture Framework (UAF)

https://www.linkedin.com/groups/8878655/

Thank you!

Are you too busy to improve?

