Applying UAF for SoS Modelling

OMG UAF Summit | 20-Mar-24 | Dr. C. von Holst

Agenda

- Introduction
- John Deere's SE Implementation
- Why System of Systems Modeling?
- Example & 1st Results
- Summary & Conclusion
- Q&A

Applying UAF for SoS Modeling

Introduction

Who is Christian?

Christian von Holst

«include»

Applying UAF for SoS Modeling

John Deere's SE Implementation

Systems Decomposition & Production Systems

John Deere's System Decomposition

Customer Focus

6

John Deere's customer operate farms. That's, where their money is made.

- To serve our customers needs, we have to understand farming operations
- Farm sites are our System-of-Systems (SoS). Here is the value stream to be understood to generate customers business opportunities
- The platform systems are a decomposition of the SoS. They receive its requirements out of the higher-level systems
- Modeling the platform systems (Systems-of-Interest or Sol) benefits from modeling the higher-level systems, up to the SoS.

Production steps – derived from ConOps

Have the Value Flows in Focus – Example: Dairy & Livestock Farm

TRACTOR SYSTEMS, ENGINEERED SUCCESS Global Tractor Systems Engineering

Company Use

Complex SoS: What if?

Execute Case Studies to Find Improvements

TRACTOR SYSTEMS, ENGINEERED SUCCESS Global Tractor Systems Engineering

Company Use

Applying UAF for SoS Modeling

System of Systems Modeling Why applying UAF?

The Idea!

Why building a Digital Twin of a D&L* Farm?

A detailed MBSE Model of a Dairy or Livestock (D&L) farm would serve several core needs:

- Execute case and sensitivity studies and immediately generate requirements downstream for the platform system
- Interconnect with other Digital Twins (other platform systems or other Production Systems)
- Fact based decision making and advanced simulation means.

But SysML comes easily to limits when modelling such complex SoS!

* D&L: Dairy & Livestock

st **TRACTOR SYSTEMS, ENGINEERED SUCCESS** Global Tractor Systems Engineering John Deere Company Use

Unified Architecture Framework Summary

Why Choosing UAF?

- SE Industry standard and managed by OMG
- Commercial Tool Packages available
- Focused on Systems of Systems or Enterprise Architecting
- Higher Enterprise Goals
 - Capabilities
 - Operational scenarios
 - Resource configurations
- Provides multiple viewpoints for SoS
- Plugin is pre-populated for diagrams and analysis
- Plugin is SysML based, so compatibility JD system
- Comprehensive documentation, trainings and experts available

Partnering for Steeper Learning Curve

How Should be Modelled in Detail?

Modelling a Dairy or Livestock Farm in CSM*

- John Deere provides the detailed agronomical and agricultural engineering knowledge for the modelling task
- John Deere also provides SysML Modeling Framework
- Bertrand provides the workforce and SysML and MBSE modeling competencies
- Dassault provides the training and tool competencies
- Dassault furthermore provides competency in the frameworks like MagicGrid or Unified Architecture Framework (UAF)

* CSM: Cameo Systems Modeler

UAF Grid in a Nutshell

Pick What's Needed

13 Applying UAF to SoS Modelling | 16-Mar-24 | Dr. Christian von Holst

Core Viewpoints → Different Abstraction Levels

Focus on Operational Scenarios

Higher Goals Why: strategies of enterprise, goals, capabilities Capability What: what to do to achieve the Operational Operational strategies? Operational Scenario Scenario Scenario Trade-Off Trade-Off Trade-Off Resources Configuration Resources Configuration Resources Configuration **Resources** Configuration Resources Configuration Resources Configuration Resources Configuration Resources Configuration Resources Configuration How & Who: how and who implements the scenarios? \rightarrow Resources etc.

TRACTOR SYSTEMS, ENGINEERED SUCCESS Global Tractor Systems Engineering JOHN DEERE

Company Use

Applying UAF for SoS Modeling

Example

UAF model of a D&L Farm

UAF for D&L Farm Modeling

And Connecting to Tractor MBSE Model

The UAF Model of the D&L Farm SoS Model

UAF offers all we need for our Farm modelling:

- Farm Goal & Capabilities → e. g. Sustainability Goal(s)
- Operational Activities \rightarrow e.g. Farm Operations
- Resources \rightarrow e. g. Land, Labor, etc.
- Farm Products \rightarrow e. g. Grass Silage
- Operational Scenarios → e. g. Jobs, Production Steps
- Resource configurations \rightarrow e.g. Solutions
- Measures \rightarrow e.g. Performance, CO2E, etc.
- Simulation
- Traceability

JOHN DEERE

Company Use

D&L Operational Scenarios

High & Mid Level Models - Example

D&L Resources

Farm Products - Example

D&L Process Flow

Grass Silage Clamp - Example

D&L Job Calculation

Slurry Application - Example

D&L Production System Needs to Platform Systems

Produce Grass Silage Clamp - Example

22 Applying UAF to SoS Modelling | 16-Mar-24 | Dr. Christian von Holst

D&L Farm

23

Simulation Capabilities - Example

TRACTOR SYSTEMS, ENGINEERED SUCCESS Applying UAF to SoS Modelling | 16-Mar-24 | Dr. Christian von Holst **Global Tractor Systems Engineering**

107.500

110.000

112.600 115.000

#7,800

100-000

102.509

105.000

epresents = Q GrassSilageClamp

Cistored SiggeCosts

annotateFalures = true

keepOpenAtterTermination = false InearInterpolation = true

FundEnnes a faine

marValue a "0.0"

mirValue = "0.0"

skiColor a "VBC334E"

recordPiotDataAs = CSV

gridX = true

oridY = true

contextPlot = faise

value m

Connecting D&L Model to Platform Model

Traceability and Connectivity UAF ↔ SysML

24 Applying UAF to SoS Modelling | 16-Mar-24 | Dr. Christian von Holst

SysML Model

gic

UAF Model

Applying UAF for SoS Modeling

Summary

And conclusion

Summary

Achievements so far

System of Systems Modeling delivers several significant advantages:

- Enhancing capabilities of Digital Thread & Digital Twin
- Direct connection to Platform Models
 possible
- Simulation means allow case studies
- Many more

But there is further work to do:

- User Interface and usability for non-experts
- Two modeling languages
- SysML v2
- Some more

JOHN DEERE

Company Use

Conclusion

And next steps

Strong focus towards Model-based Systems Engineering delivers competitive advantage

- The Proof-of-Concept (PoC) will be continued into a pilot
- Especially the user interface to nonexperts needs improvements (competing w/ MS Excel ©)
- Partnering with Experts accelerated learning curve significantly and delivered quickly exciting results

The journey towards MBSoSE* just started

* MBSoSE:Model-based System of Systems Engineering Cameo Systems Modeler

28 Applying UAF to SoS Modelling | 16-Mar-24 | Dr. Christian von Holst

